Altitude Training

Live High Train High

Cheryl Webb – ACPE 6816

What is Altitude

- The higher you go the thinner the air
- Thinner air means less air resistance
- Therefore, sprinters & jumpers perform better at altitude BUT
- Thinner air means less
 oxygen for the endurance
 athlete and consequently
 Slower performances

What this means

- The body adapts to less oxygen
- Increases the red blood cells
- Red blood cells are produced in response to a greater release of the hormone erythropoietin (EPO) by the kidneys
- These red blood cells carry oxygen from your lungs to your muscles
- The more red blood cells you have the more oxygen your blood can carry

When you get back to sea level?

 Extra red blood cells will supercharge your muscles with oxygen and push you along faster. Well that's the idea!!!

- Increased endurance and speed
- Improved recovery
- Less fatigue

Possible side effects at altitude

- Higher heart rate
- Decreased appetite
- Insomnia
- Dizziness
- Headache
- Nausea
- Fatigue
- Nose bleeds
- Mostly occur at high altitudes of 2200mtrs or above

Precautions

- Iron is one of the building blocks of red blood cells. So you must make sure you have sufficient iron levels when you first come to altitude
- It is also good to be in generally good health and to take vitamin C while at altitude
- Wk 1. shorter and low intensity sessions to adapt
- Wk 2. sessions can be made longer with gradual introduction to intensity
- Wk 3. is closer to sea level type of training for the robust athlete

(the more altitude training you have the more you get better at adapting next time round)

Most common mistakes

- Intensities too high
- Recovery times too short

Recovery

- Very important!!
- Recovery is slower at altitude
- Nutrition, hydration and rest are even more important than usual to enhance the process

Where to go

- Thredbo 1365m
- Falls Creek 1600m
- Boulder, Colorado 1655m
- St Moritz, Switzerland 1800m
- Flagstaff, Arizona 2100m

References

- Baker, A. & Hopkins, W.G. (1998). Altitude training for sea-Level competition. Sportscience Training and Technology. Internet Society for Sport Science. http://sportsci.org/traintech/altitude/wgh.html
- Burtscher, M., Nachbauer, W., Baumgartl, P, & Philadelphy, M. (1996). Benefits of training at moderate altitude versus sea level training in amateur runners. European Journal of Applied Physiology, 74, 558-563.
- Buskirk, E.R., Kollias, J., Akers, R.F., et al. (1967). Maximal performance at altitude and on return from altitude in conditioned runners. Journal of Applied Physiology, 23, 259-266.
- Daniels, J., & Oldridge, N. (1970). The effects of alternate exposure to altitude and sea level on world-class middle-distance runners. Medicine and Science in Sports, 2, 107-112.
- Faulkner, J.A., Daniels, J.T., & Balke, B. (1967). The effects of training at moderate altitude on physical performance capacity. Journal of Applied Physiology, 23, 85-89.
- Gore, C.J., Hahn, A.G., Burge, C.M., & Telford, R.D. (1997). VO2max and haemoglobin mass of trained athletes during high intensity training. International Journal of Sports Medicine, 18, 477-482.
- Hellemans, J. (2005). The highs and lows of altitude training. Cycling News.
- Levine, B.D., & Stray-Gundersen, J. (1992). Altitude training does not improve running performance more than equivalent training near sea level in trained runners. Medicine and Science in Sports and Exercise, 24, S95 (Abstract 569).
- Nummela, A., Jouste, P., & Rusko, H. (1996). Effect of living high and training low on sea level anaerobic performance in runners. Medicine and Science in Sports and Exercise, 28, S124 (Abstract 740).
- Stray-Gundersen, J., & Levine, B.D. (1997). "Living high-training high and low" is equivalent to "living hightraining low" for sea-level performance. Medicine and Science in Sports and Exercise, 29, S136 (Abstract 783).
- Telford, R.D., Graham, K.S., Sutton, J.R., et al. (1996). Medium altitude training and sea-level performance. Medicine and Science in Sports and Exercise, 28, S124, (Abstract 741).
- Wolski, L.A., McKenzie, D.C., & Wenger, H.A. (1996). Altitude training for improvements in sea level performance: is there scientific evidence of benefit? Sports Medicine, 22, 251-263.